Apply Now - become a Frictionless Data Reproducible Research Fellow
The Frictionless Data Reproducible Research Fellows Program (opens new window), supported by the Sloan Foundation, aims to train graduate students, postdoctoral scholars, and early career researchers how to become champions for open, reproducible research using Frictionless Data tools and approaches in their field.
# Apply today to join the Third Cohort of Frictionless Data Fellows!
Fellows will learn about Frictionless Data, including how to use Frictionless tools in their domains to improve reproducible research workflows, and how to advocate for open science. Working closely with the Frictionless Data team, Fellows will lead training workshops at conferences, host events at universities and in labs, and write blogs and other communications content. In addition to mentorship, we are providing Fellows with stipends of $5,000 to support their work and time during the nine-month long Fellowship. We welcome applications using this form (opens new window) from 4th August until 31st August 2021, with the Fellowship starting in October. We value diversity and encourage applicants from communities that are under-represented in science and technology, people of colour, women, people with disabilities, and LGBTI+ individuals. Questions? Please read the FAQ (opens new window), and feel free to email us ([email protected]) if your question is not answered in the FAQ.
# Frictionless Data for Reproducible Research
The Fellowship is part of the Frictionless Data for Reproducible Research (opens new window) project at Open Knowledge Foundation (opens new window), and is the third iteration. Frictionless Data aims to reduce the friction often found when working with data, such as when data is poorly structured, incomplete, hard to find, or is archived in difficult to use formats. This project, funded by the Sloan Foundation and the Open Knowledge Foundation, applies our work to data-driven research disciplines, in order to help researchers and the research community resolve data workflow issues. At its core, Frictionless Data is a set of specifications for data and metadata interoperability, accompanied by a collection of software libraries that implement these specifications, and a range of best practices for data management. The core specification, the Data Package, is a simple and practical “container” for data and metadata. The Frictionless Data approach aims to address identified needs for improving data-driven research such as generalized, standard metadata formats, interoperable data, and open-source tooling for data validation.
# Fellowship program
During the Fellowship, our team will be on hand to work closely with you as you complete the work. We will help you learn Frictionless Data tooling and software, and provide you with resources to help you create workshops and presentations. Also, we will announce Fellows on the project website and will be publishing your blogs and workshops slides within our network channels. We will provide mentorship on how to work on an Open project, and will work with you to achieve your Fellowship goals. You can read more about the first two cohorts of the Programme in the Fellows blog: http://fellows.frictionlessdata.io/blog/ (opens new window).
# How to apply
The Fund is open to early career research individuals, such as graduate students and postdoctoral scholars, anywhere in the world, and in any scientific discipline. Successful applicants will be enthusiastic about reproducible research and open science, have some experience with communications, writing, or giving presentations, and have some technical skills (basic experience with Python, R, or Matlab for example), but do not need to be technically proficient. If you are interested, but do not have all of the qualifications, we still encourage you to apply (opens new window). We welcome applications using this form (opens new window) from 4th August until 31st August 2021.
If you have any questions, please email the team at [email protected] and check out the Fellows FAQ section (opens new window). Apply (opens new window) soon, and share with your networks!